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Linear stability of incompressible flow in a circular pipe is considered. Use is made of 
a vector function formulation involving the radial velocity and radial vorticity only. 
Asymptotic as well as transient stability are investigated using eigenvalues and E-  

pseudoeigenvalues, respectively. Energy stability is probed by establishing a link to the 
numerical range of the linear stability operator. Substantial transient growth followed 
by exponential decay has been found and parameter studies revealed that the 
maximum amplification of initial energy density is experienced by disturbances with no 
streamwise dependence and azimuthal wavenumber n = 1. It has also been found that 
the maximum in energy scales with the Reynolds number squared, as for other shear 
flows. The flow field of the optimal disturbance, exploiting the transient growth 
mechanism maximally, has been determined and followed in time. Optimal 
disturbances are in general characterized by a strong shear layer in the centre of the 
pipe and their overall structure has been found not to change significantly as time 
evolves. The presented linear transient growth mechanism which has its origin in the 
non-normality of the linearized Navier-Stokes operator, may provide a viable process 
for triggering finite-amplitude effects. 

1. Introduction 
The onset of turbulent fluid motion in a circular pipe has been the object of many 

investigations over the past few decades. This type of flow is of particular interest since 
no critical Reynolds number exists above which solutions grow exponentially. This has 
been shown analytically for axisymmetric disturbances (Romanov 1973 ; Herron 199 l), 
whereas for non-axisymmetric perturbations there exists a large body of numerical 
evidence that suggests that Poiseuille flow in a circular pipe is linearly stable for all 
Reynolds numbers (Lessen, Sadler & Liu 1968; Metcalfe & Orszag 1973; Salwen, 
Cotton & Grosch 1980). Experimental investigations, however, show that pipe flow 
accommodates growing perturbations for Reynolds numbers (based on the pipe radius 
and the centreline velocity) larger than approximately 2000 (Salwen et al. 1980). 
Although several investigators have tried to resolve this discrepancy between the linear 
theory and the experiments, the hydrodynamic stability problem for circular pipe flow 
still lacks a satisfactory explanation. 

Davey (1978) considered the linear stability of flow in an elliptical pipe which is 
nearly circular. The resulting perturbation problem was solved for the required 
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eccentricity of the pipe necessary to destabilize the mean flow. Above an ellipticity of 
e = 0.07 exponentially growing solutions have been found. His analysis also showed 
that the temporal damping rates of non-axisymmetric wall modes monotonically 
decrease as the eccentricity of the pipe increases. 

Mackrodt (1976) studied the effect of rigid rotation on the stability of circular pipe 
flow and found that for high axial Reynolds numbers, only a small amount of rotation 
is required to trigger instabilities that may ultimately lead to transition. In an earlier 
investigation Maslowe (1 974) derived a necessary condition for non-axisymmetric 
instabilities in rigidly rotating flows based on the stability equations given in Howard 
& Gupta (1962). 

In a similar attempt, Tatsumi (1952) investigated the linear stability of the inlet flow 
of a circular pipe and determined the critical Reynolds number for this type of flow to 
be about 9700. 

Nonlinear effects have also been proposed as a reason for the discrepancy between 
linear theory and experiment. Davey & Nguyen (1971) calculated the stability of pipe 
flow to small but finite-amplitude axisymmetric disturbances. Their weakly nonlinear 
analysis showed that a centre mode rather than a wall mode is more likely to cause 
nonlinear instabilities. 

Gustavsson (1989) analysed the linear stability operator in terms of degeneracies 
between the pressure perturbations and the streamwise velocity perturbations. The 
resulting resonance may lead to algebraic growth followed by exponential decay. This 
resonance has been proposed as a possible mechanism that triggers nonlinear effects. 

It has been recognized in recent years that the linear stability operators for plane 
shear flows can support solutions that exhibit large transient growth in energy, 
although the eigensolutions of the operators are damped. This phenomenon is due to 
the non-normality of the underlying linear operator, which results in a set of non- 
orthogonal eigenfunctions. Expansions of the flow field in non-orthogonal eigen- 
functions can result in large expansion coefficients that mostly cancel each other out. 
As time progresses, however, this cancellation ceases to exist, resulting in transient 
growth of initial energy. 

This transient growth mechanism has attracted the attention of scientists in the field 
of hydrodynamic stability. Farrell(l988) studied the development of two-dimensional 
disturbances that optimally excite plane channel flow by this linear mechanism and 
computed the amplification factors of their energy density. Gustavsson (1991), 
however, who considered the energy growth of three-dimensional disturbances for 
various parameter combinations, showed that the growth of energy density for three- 
dimensional disturbances can be substantially larger than that for two-dimensional 
perturbations. Subsequent studies have been undertaken by Butler & Farrell (1992), 
who used a variational technique to calculate the optimal disturbances, and by Reddy, 
Schmid & Henningson (1993) and Reddy & Henningson (1993) who directly estimated 
the matrix exponential in order to explain and quantify transient effects in plane 
Poiseuille flow for two- and three-dimensional perturbations. 

Trefethen et al. (1993) addressed the general concept of non-modal stability analysis 
and, besides the transient growth of disturbance energy, gave two alternative 
interpretations of non-modal effects : the resonance behaviour with background noise 
and the sensitivity to laboratory imperfections. 

The nonlinear development of disturbances experiencing transient growth was first 
studied in a magnetohydrodynamical context by Willke (1967). He found that a finite- 
amplitude disturbance can at most grow up to the magnitude of the maximum velocity 
difference present in the base flow (see Lundbladh 1993 for a further discussion of the 
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implications of this work for wall-bounded shear flows). Boberg & Brosa (1988) 
investigated the nonlinear initial value problem for flow in a pipe. They suggested a 
linear non-modal mechanism consisting of decaying and transiently amplified solutions 
of the linearized problem as a main provider of kinetic disturbance energy. The severe 
truncation of their modal expansion and the exclusion of the mean flow modification, 
however, do not allow immediate and quantitative conclusions about the onset of pipe 
flow turbulence, although some stability features have been captured qualitatively. In a 
report by O’Sullivan & Breuer (1992), transient growth of disturbance energy for a 
specific family of initial conditions has been observed and quantitatively mapped out 
for a range of parameters. In a similar attempt, Bergstrom (1992, 1993) documented 
transient effects in circular pipes for vanishing streamwise wavenumbers (1 992) as well 
as for a range of non-zero streamwise wavenumbers (1993). 

As in the investigations just mentioned, the present work extends the scope of linear 
theory for circular pipe flow to include transient behaviour of infinitesimal three- 
dimensional disturbances. It is restricted to the linear growth mechanism described 
above. In addition to what has previously been done, an exhaustive parameter study 
of the transient growth is presented. Furthermore, we focus on the structure of the 
disturbances that achieve the maximum amplification of initial energy density. 

A similar analysis of transient phenomena for plane Poiseuille and plane Couette 
flow has been presented in Reddy & Henningson (1993), and the structure of this 
presentation will closely follow their work. The mathematical methods will be adapted 
to the flow in circular geometries, and similarities as well as discrepancies between the 
two flow geometries will be pointed out and investigated. 

The organization of the paper is as follows. Section 2 states the governing equations; 
use is made of a two-component vector formulation involving the radial velocity and 
the radial vorticity, in analogy to a similar decomposition technique for plane bounded 
flows. A scalar product and its associated norm based on the energy density of the flow 
are introduced and the necessary tools to characterize the transient behaviour of 
solutions to the initial value problem will be developed. In $3 we consider the 
asymptotic time behaviour of the eigenvalues of the linear stability operator, as well as 
the transient time behaviour as described by methods introduced in $2. Furthermore, 
the issue of optimal disturbances for circular pipe flow is addressed and a parameter 
study mapping out the transient energy density growth is presented. Section 4 
concludes this work with a discussion of the results presented. 

2. The initial value problem 
In this section we will state the governing equations and develop the mathematical 

framework to analyse the linear initial value problem for the evolution of infinitesimal 
disturbances in incompressible pipe flow. As an aid to the reader, the analysis of a 
simple model problem using the techniques outlined in this section is provided in the 
Appendix to complement the analysis of the linearized Navier-Stokes operator for 
flow in circular pipes. 

2.1. Linearized Navier-Stokes equations 
Our starting point for the analysis of infinitesimal disturbances in circular pipe flow is 
the linearized Navier-Stokes equation for incompressible flow in circular coordinates, 
where an axial mean flow of the form U = U(r) has been assumed: 
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Here u, v, w are the perturbation velocities in the axial (z), radial ( r )  and the 
azimuthal (19) direction, respectively; p denotes the perturbation pressure and the prime 
stands for a differentiation with respect to r .  The equations above have been non- 
dimensionalized by the pipe radius a and the centreline velocity UcL, and the Reynolds 
number R is defined as U,, a/v, with Y the kinematic viscosity. As the flow is periodic 
in the azimuthal direction and will be assumed periodic in the streamwise direction, the 
dependence of all flow quantities on these coordinates will be taken to be of the form 
(u, u, ~ , p ) ~  = (ti, 0, $,e)T exp (iaz + in6) with a~ 6% as the streamwise wavenumber and 
n E 9  as the azimuthal wavenumber. The presence of two homogeneous directions 
allows us to further reduce the equations to the more convenient radial velocity 
(@radial vorticity ( f )  form as suggested by Burridge & Drazin (1969) 

(Ri+iaRU)Y&-T(E) iaR U' ' @ a = Y(k2r2Y) &+2aRn2F'Si, 

k2r2 R-+iaRU b+-& = Y'Si+?Y$, 
i U' 2aR 

( t t  ) r R 

with k2 = a2+n2/r2, 

The variables & and 'Si describe the problem completely; the streamwise velocity li 
and the azimuthal velocity G can be recovered by 

where the continuity equation and the definition of the radial vorticity have been 
exploited. 

In the equation stated above a similar scaling has been used as proposed by 
Gustavsson (1991) for plane Poiseuille flow. This scaling has the advantage that for 
two-dimensional disturbances (a = 0), the equations only depend on the azimuthal 
wavenumber n if the scaled time T = t/R is introduced. Hence, for a given azimuthal 
periodicity, results obtained for a particular Reynolds number can be scaled to a 
different Reynolds number in a straightforward manner. For the general case of three- 
dimensional perturbations, three parameters have to be specified, which are most 
conveniently chosen to be aR, R and n. 
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For the subsequent analysis it will be of advantage to cast-the governing equations 
into matrix form by introducing vector functions 4 = (@a)', which results in the 
linear initial-boundary-value problem 

with 

In addition to the inviscid coupling term - iU'/r, which in an analogous form is also 
present in plane flows (Henningson & Schmid 1992), viscous coupling terms appear 
which stem from the non-zero off-diagonal terms in the vector Laplacian for cylindrical 
coordinate systems. 

Note that the linear evolution operator, mapping the flow field to its time derivative, 
is in this notation given by Z1 = K19. 

The matrix formulation for hydrodynamic stability equations with two homo- 
geneous coordinates was originally introduced by DiPrima (1967) in an analysis of 
Taylor-Couette flow. It has been applied to bounded parallel shear flows by 
Henningson & Schmid (1 992), where it has proven advantageous for analytical studies 
and numerical implementations. 

Boundary conditions have to be imposed on 6 and n in order to uniquely determine 
the solution to the physical problem. The boundary conditions for the solid wall at 
r = 1 are given by the no-slip assumption and can be written in the form 

@ = @ ' = 5 2 = 0  at r = l .  (2)  
The boundary conditions for the channel centreline ( r  = 0) can easily be derived using 
the fact that the velocity vector has a vanishing azimuthal dependence as the centreline 
is approached (Khorrami, Malik & Ash 1989), i.e. 

1 , .  1 

a 
r+o a0 
lim - (ue, + ue, + we,) = 0, 

where e,, e,, e, denote the unit vectors in the axial, radial and azimuthal directions, 
respectively. For cylindrical coordinates 

and the restriction that each indiyidual component has to vanish yields the required 
boundary conditions for @ and 52 at r = 0: 

(3) 
1 I - 1  

@ = @ = O  for n = 0, 
6 = B = 0, &finite for n = + I ,  
@ = @' = 52 = 0 for n 2 2. 
" 1  

The governing equation (1) together with the boundary conditions (2) and (3) fully 
describe the motion of infinitesimal spatially periodic disturbances and will be the focus 
of further analysis. 
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2.2, Inner product, associated norm and eigenfunction expansion 
As we are mainly interested in an analysis of the initial value problem rather than just 
the eigenvalues of the evolution operator (g), it is necessary to introduce a scalar 
product upon which all further computations will rest. This scalar product and its 
associated norm constitute the fundamental measure for quantities describing the 
transient behaviour. Both the qualitative and quantitative behaviour will depend on 
the choice of the scalar product. 

For the remainder of this presentation we will make use of a scalar product based 
on the energy density defined as 

where the L,-scalar product (. , .), is defined as 

1 

M g )  = k,f)* =.I gHfrdr. 
0 

The superscripts H and * denote the complex-conjugate transpose and the complex 

Based on this scalar product, the associated norm, referred to hereafter as the energy 
conjugate, respectively. 

norm, is given as follows: 

= x s: []GI2 + 1612 + 1 $ 1 2 ]  rdr;  

llqll> is the kinetic energy density for flow in circular geometry. 
It will greatly simplify our further analysis to use a discrete approximation of the 

continuous scalar product defined by (4). This is most easily accomplished by an 
expansion of the vector quantities q in the vector eigensolutions of the linear initial 
value problem. Assuming solutions of the form 

q = q"exp(-iw) WE%? 

will transform the initial value problem (1) into a generalized eigenvalue problem of the 
form 

Restricting ourselves to the space Y N  spanned by the first N eigenfunctions of ( 5 )  

9 4  = iw&. ( 5 )  

YN = span (41,423 . . . , q"N1 

and expanding the vector functions q E Y N  in the basis {Q1,. . . , g N } ,  

we can restate the initial value problem (1) in a particularly simple form as 

(7) 
dlt 
- = -iAic, K E % ? ~ ,  
dr 
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with IC = ( K ~ ,  K ~ ,  . . , , K ~ ) ~ ,  A = diag{w,,w,, . . , , w N } .  

Thus, A represents the linear evolution operator, g, projected onto the space 9”. 
Henceforth, we can focus our attention on the analysis of the initial value problem (7) 
and describe the evolution of infinitesimal disturbances in circular pipe flow by the 
expansion coefficients K instead of the state vector q. For later comparison with results 
obtained by previous investigators we also define the spectrum A R  as A R  = (1 / R )  diag 

To complete the transformation from the vector quantities q to the expansion 
coefficients K ,  we also have to reformulate the scalar product as well as its associated 
norm. 

{wl, @2, . . . ?  @ N ) *  

If ql ,  q2 E 9”, it follows from (4) and (6) that 

1 

(ql,q2)A = T C ~  qFMqlrdr  = hfMrcl,  ME%^^^, 
0 

where M is the Hermitian matrix whose elements are given by 

ri 

After factoring M according to M = FHF, the vector scalar product (. , . )M can be 
defined as 

(xl, K ~ ) M  = (Fx1, FK,), = K: FH& = K: M K ~  = (ql, qZ)& 

and its associated vector norm satisfies 

llKllM = IIFICl12 = llqll&, q E y N .  

For matrices B e q N x N ,  the energy norm is defined in terms of the vector norm in the 
standard manner. 

In what follows we will, if not otherwise stated, use the discrete scalar product and 
norm based on the energy density and will, therefore, omit the subscript M hereafter. 

2.3. Transient growth and pseudospectra 
It is a key issue of this work to generally distinguish two temporal domains in the 
analysis of linear stability. The two domains demand different tools to investigate 
stability. In one domain we are concerned with the asymptotic stability in the limit of 
large time, whereas in the other domain we will focus our attention on the short-time 
behaviour of solutions to the underlying initial value problem. 

In order to illustrate this issue, it is most instructive to consider the formal solution 
of the initial value problem (7), which can be written as 

IC = exp (- i7A) lc0, I C ~  = 147 = 0). 

The maximum possible amplification G of initial energy density is given by 

To further our insight, upper and lower bounds on the norm of the matrix exponential 
are given as follows: 

exp (wi 7 )  < IIexp (- i7A) II < ll Fll II F-l I1 exp (wi 7 )  = K(F) exp (wi 71, 
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where wi denotes the imaginary part of the least stable eigenvalue of A and the quantity 
K(F) = llFllz llF-1112 is known as the condition number of the matrix F and is greater 
than or equal to one. 

Two cases have to be distinguished. 
If K(F) equals one, the upper and lower bounds coincide and the temporal evolution 

of the maximum amplification factor G is dictated by the least-stable eigenvalue for all 
times. 

If K(F) is substantially larger than one, then the behaviour of G(T) is determined by 
wi only in the asymptotic limit of large times. For short times, there may be substantial 
transient growth although oi < 0. 

Recall that the matrix A represents the evolution operator 3 projected onto the 
space YN.  % is called normal if it commutes with its adjoint, i.e. % 9; = 9: 3, 
where the adjoint is defined by the relation (% q, q)& = ( q , 9 :  q)&. A necessary and 
sufficient condition for an operator to be normal is that it has orthogonal eigenfunctions 
(Kato 1976), i.e. (ai,&),= aii. In terms of the projection onto Y N  this implies 
K(F) = 1 if z1 is normal and K(F) > 1 if z1 is non-normal. Note that the adjoint of A 
in YN is A+ = M-'AHM, implying that A+A = AA+ if M = /. 

The linear evolution operator for infinitesimal disturbances in circular pipe flow is 
of non-normal type, thus limiting the information content of the spectrum to the 
behaviour for large times. In order to also capture short-time transient behaviour of 
non-normal operators, a generalization of the concept of spectra based on the resolvent 
norm of the linear operator can be defined. 

This leads to the definition of s-pseudospectra, introduced by Trefethen (1992) to 
analyse the behaviour of non-normal operators and matrices. A number z E %? lies in the 
e-pseudospectrum of a matrix A, which we denote by A @ ) ,  if either of the following 
equivalent conditions is satisfied : 

DEFINITION 1. z is an eigenvalue of A" = A + E for some perturbation matrix E with 
lIEII G 6 ;  

DEFINITION 2. ZEV and ~ ~ ( z / - A ) - ~ ~ ~  3 

The definitions for operators are essentially the same. For the details, see Reddy et 
al. (1993). 

The first definition relates the 6-pseudospectrum to the spectrum of a randomly 
perturbed matrix : z is considered an e-pseudoeigenvalue of A if it is an exact eigenvalue 
of a matrix A which is perturbed by a random matrix E of norm 8 .  

The second definition uses the norm of the resolvent R(z) = (z/--A)-', which is 
continuously defined in the complex plane with the exception of the spectrum of A. The 
point spectrum of A will correspond to the locations where the norm of the resolvent 
tends to infinity. For finite but large resolvent norm, z will be defined as an €-pseudo- 
eigenvalue of A with e = l/l lR(z)l~. 

For our case, the norm of the resolvent is most easily calculated by the singular value 
decomposition as 

where (rl denotes the largest singular value. 
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It is important to note that both definitions describe the e-pseudospectrum as a 
parameter-dependent region in the complex plane rather than a discrete set. 

A link between the occurrence of transient growth and the e-pseudospectrum is given 
by the Hille-Yosida theorem (Kato 1976; Pazy 1983), which states that the energy 
amplification G maximized over time and denoted by G,,, is equal to one (which is 
equivalent to no transient growth) if and only if the quantity 

is less than one, where P(e) is the maximum imaginary part of the e-pseudospectrum 
in the unstable half-plane. An application given in $3 will illustrate the use of this 
theorem. This means that growth can be estimated from the quantity y, that measures 
how far the pseudospectrum reaches into the unstable half-plane. Not only does the 
quantity y, give information about the potential for transient growth, it also provides 
a lower bound for the maximum possible growth G,,, as the following inequality 
holds (Trefethen 1992): 

An upper bound for the maximum growth G,,, can be derived from the e-pseudo- 
spectrum via resolvent integrals. For further details the reader is referred to Reddy et 
al. (1993). 

2.4. Optimal disturbances 
It is important to keep in mind that the curve given by Ilexp(-iTA)/l represents the 
maximum possible energy amplification, which for each instant of time is optimized 
over all possible initial conditions with unit energy norm. The initial condition that 
optimizes the amplification factor might be different for different times, so that 
Ilexp(-i7A)lI should be thought of as the envelope of the energy evolution of 
individual initial conditions with unit energy norm. 

However, it is not difficult to determine the initial condition that will reach the 
maximum possible amplification at a given time 70 and will be tangent to IIexp (-i7A)II 
at 70. The procedure is best understood in terms of the singular value decomposition 
(SVD). Let us deompose the matrix B = Fexp ( -iT0 A )  F-l according to 

BV = UZ, 

where V and U are unitary matrices and Z is a diagonal matrix consisting of the 
singular values, Z = diag{cr,, . . . , crN},  crj E B: which are ordered in size, i.e. cr, 2 cr2 2 
... crN.  

The 2-norm of B, equivalent to the energy norm of exp (-i7A), is given by the 
largest singular value crl. Concentrating only on the column vectors of V and U 
corresponding to cr,, which are referred to as the principal right and left singular 
vectors, respectively, one obtains 

Bv, = cr1u1. 

This describes a mapping B of an input vector v,  onto an output vector u, which is 
in addition stretched by a factor of cr, equal to the 2-norm of B. Therefore, v1 describes 
the initial condition that will be amplified by a factor of cr, = 11 B 1 1  due to the mapping 
Fexp (- i70 A )  Fl. Here 70 is the time at which this amplification will be reached. In 
order to extract the coefficients K ,  of the initial condition we have to express v1 in the 
basis {&, . . . , Q N } ,  which is accomplished by 

Icl = F-lv,. (10) 
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In short, the coefficients for the disturbance that will reach its maximum possible 
amplification at a given time are given by (lo), where u, stands for the principal right 
singular vector of the matrix Fexp (- i7,, A )  F-l. An alternative method to compute the 
optimal disturbances is using the calculus of variations (see Butler & Farrell 1992). 

It should be noted that the initial condition K~ may reach higher energies after 70, but 
at the time T ~ ,  it will be the unique initial disturbance among all unit energy initial 
disturbances that will reach the maximum possible energy amplification. The phrase 
'maximum possible amplification at 70 ' is thus an optimization over initial conditions 
with unit energy norm, rather than an optimization over time. 

With this note, we conclude the theoretical background on the tools to study linear 
stability of bounded shear flows and will now consider applications to the stability of 
incompressible viscous flow in a circular pipe. 

P.  J .  Schmid and D .  S .  Henningson 

2 .5 .  Energy equations and the numerical range 
Up to this point only perturbations of infinitesimal amplitudes have been considered. 
A different approach to hydrodynamic stability theory is concerned with the calculation 
of critical Reynolds numbers below which disturbances of arbitrary amplitude will 
experience monotonic decay. This approach, which is known as the energy or absolute 
stability method (Joseph & Carmi 1969), is based on the evolution equation for the 
perturbation energy, which is referred to as the Reynolds-Orr equation (see e.g. Drazin 
& Reid 1981). 

In order to put the analysis of this section into perspective, we will briefly digress to 
elaborate on the derivation and implications of the Reynolds-Orr equation, which is 
most conveniently done in terms of vector calculus for primitive variables. The 
equation of motion for the disturbance velocity u about a steady mean state U reads 

To arrive at the evolution equation for the total disturbance energy, defined as 

where the integral is taken over the entire domain under consideration, we take the 
scalar product of (1 1) and u, and integrate the resulting expression. We obtain 

R 

where the vector identity u .  (( U .  0 )  u + (u- 0 )  u + Vp) = V - (f( U+ u) Iu1' + up) valid for 
solenoidal u and U, as well as the divergence theorem have been employed. The integral 
over the boundary S of the fluid domain will vanish for spatially periodic or localized 
disturbances. As we will only be concerned with spatially periodic disturbances, we can 
further simplify the equation above, to arrive at 
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This equation is the starting point for determining the critical Reynolds number 
below which the energy of a general finite-amplitude disturbance will decay. For details 
on the solution procedure, which rests upon the calculus of variations, the interested 
reader is directed to Joseph & Carmi (1969). 

It is important to notice that the nonlinear terms of (11), i.e. (u -V)u ,  do not enter 
the Reynolds-Orr equation (12). Thus, any gain in total disturbance energy has to stem 
from a linear process, which according to (12) can be described as a balance of mean 
flow interaction and viscous dissipation. 

This essential result will now motivate the use of the linearized initial value problem 
(7) in the derivation of the evolution equation for the energy norm in terms of the 
notation introduced in (6). 

It follows from the definition of the scalar product and its associated norm that 

= (-iArc,x)+(rc, -iArc) = 2Im(Arc,rc). (13) 

The equation governing the total perturbation energy is obtained by summing (13) 
over all streamwise and azimuthal wavenumbers : 

where K,, is the vector of eigenfunction expansion coefficients for the streamwise 
wavenumber a, = ma and azimuthal wavenumber n. This equation is identical to (12) 
because the nonlinear terms of (1 1) do not contribute to the temporal evolution of the 
total perturbation energy. The sign of the imaginary part of (Arc, rc) determines whether 
the rate of change of energy density l l ~ 1 1 ~  is positive or negative, as can easily be seen 
from (13). 

Using the adjoint we can rewrite (13) as 

where f HL = - i(A -A+) .  Thus, the maximum growth rate possible can be determined 
as 

max llLl~11~ = I I f  
ll~ll-1 

The quantity (Arc, K) defines the numerical range in the following manner. 

F(A) = { z :  z = ( A K , r c ) ,  llKll = 1). 

Thus the maximum of the imaginary part of the numerical range of A determines the 
growth rate in energy density for 7 = O+ exactly, as can be easily demonstrated with an 
expansion around t = 0. 

It follows that the condition for energy density growth can be restated in terms of 
the numerical range: a necessary and sufficient condition for the growth of energy 
density is that the numerical range @ ( A )  extends into the upper complex half-plane. 
Thus, the critical Reynolds number below which no energy density growth is possible 
is equivalent to the Reynolds number for which the numerical range is entirely confined 
to the stable half-plane with the boundary of the numerical range tangent to the real 
axis. This critical Reynolds number thus coincides with the one obtained by the energy 
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stability method (Joseph & Carmi 1969) which is based on a variational principle 
applied to (12). This has been discussed by Reddy & Henningson (1993) and 
Henningson & Reddy (1994). 

The numerical range can be calculated using standard techniques which can be 
found in, for example, Horn & Johnson (1991). 

3. Numerical results 
In this section we will apply the tools developed in the previous section to investigate 

the linear stability of solutions to the initial value problem (7). Before launching into 
this analysis, we shall briefly describe the numerical method used throughout this 
presentation. 

A hybrid spectral collocation technique (see Herbert 1977) based on Chebyshev 
polynomials is employed to spatially discretize the initial-boundary-value problem. A 
linear mapping of the radial coordinate r E  [0,1] onto the interval [ E  [ - 1,1] has been 
chosen, which results in an expansion of the flow quantities of the form 

K K 

&r) = C. 46k ~ , ( 2 r -  11, d(r> = C. d, ~ , ( 2 r -  1). 
k=O k=O 

The Chebyshev polynomials are evaluated at the Gauss-Lobatto collocation points 
given as 

= 2rj- 1 = COS(~X/K), j = 0, 1,. .., K, 

where K +  1 is both the maximum number of collocation points and the number of 
Chebyshev polynomials. The resultjng_spatially discretized equations are solved for the 
unknown expansion coefficients (Gk 0,) with k = 0,. . . , K. 

Coordinate singularities at the centre of the pipe are avoided by imposing boundary 
conditions at the matrix rows corresponding to the collocation points at r = 0 instead 
of solving the governing equations at this collocation point. 

3.1. Asymptotic behaviour 
Linear stability is concerned with the evolution of disturbances of infinitesimal 
amplitude in the asymptotic limit of large times. To this end, the temporal behaviour 
of the disturbances is assumed to be of the form exp(-iw), with w the complex 
frequency. If the imaginary part of w is positive, the mean flow field is said to be linearly 
unstable; if the imaginary part of w is negative, it is linearly stable. A perturbation with 
vanishing imaginary part of w defines the mean field as neutrally stable. 

Mathematically, the assumption of mode-like temporal behaviour transforms the 
initial-boundary-value problem (1) into a generalized eigenvalue problem (5). In all 
cases presented, the generalized problem has been reduced to a standard eigenvalue 
problem which was then solved by the QR-algorithm. 

Figure 1 shows the pipe flow spectrum A R  for the parameters CL = 1, n = 1 and R = 
3000. Sixty Chebyshev polynomials have been used to accurately represent radial 
velocity and radial vorticity. The spectrum shows the typical three-branch structure 
similar to spectra for plane Poiseuille or Couette flow (Drazin & Reid 1981), allowing 
an analogous classification of eigensolutions into so-called wall modes, centre modes 
and mean modes. Wall modes are characterized by a vanishing phase velocity c, = 
Re (w/aR) as the product of streamwise wavenumber and Reynolds number increases ; 
centre modes on the other hand propagate at almost the pipe centreline velocity for 
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FIGURE 1. Pipe flow spectrum A R  for a = 1, n = 1, R = 3000. N = 60 Chebyshev polynomials 
have been used to discretize the normal direction. 

large aR, and mean modes are characterized by a phase velocity of $ as aR tends to zero 
(Drazin & Reid 1981): 

wallmodes: c,+O as aR+co; 

centre modes: c,+ 1 as aR+ co; 

meanmodes: c,+Q as aR+O. 

It is interesting to note that for increasing Reynolds numbers R, the number of wall 

Two distinct special cases follow from the general equations. 
(i) For n = 0, the governing equations describe the evolution of axisymmetric 

perturbations. Axisymmetric disturbances are entirely determined by the radial 
velocity component, as the streamwise velocity follows from the continuity equation. 
The radial vorticity for axisymmetric disturbances is zero. 

(ii) For a = 0, the governing equations reduce to the evolution equations for two- 
dimensional disturbances. For this case, the viscous off-diagonal coupling terms 
vanish, which allows one to separate the vector eigenfunctions into radial velocity and 
radial vorticity modes. However, the inviscid coupling term, forcing the radial vorticity 
equation, persists even for two-dimensional perturbations, which results in a particular 
radial vorticity component associated with each radial velocity mode. 

For three-dimensional and non-axisymmetric disturbances, the eigensolutions of the 
vector equation cannot uniquely be separated into velocity and vorticity modes, but 
rather have to be viewed as a compound quantity. 

Two types of errors have to be distinguished when accurately calculating the 
eigenvalues: truncation error and roundoff error. Although both types of error 
ultimately result in erroneous eigenvalues, their effect on the spectrum has a quite 
distinct character. Truncation error is due to insufficient resolution and will especially 
affect higher mean modes. This is because these modes show increasingly oscillatory 
behaviour in both the real and imaginary parts, which a low number of expansion 

modes monotonically decreases (Metcalfe & Orszag 1973; Salwen et al. 1980). 
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FIGURE 2. Pipe flow spectrum A R  for a. = 1, n = 1 ,  R = 3000. (a) Effect of truncation; N = 32 
Chebyshev polynomials have been used in the normal direction. (b) Effect of roundoff (16 bits have 
been used). 

functions fails to approximate properly. Roundoff errors, on the other hand, are due 
to the finite representation of floating point numbers on a digital computer and cannot 
be controlled by an increase in the number of basis functions. Particularly for high 
Reynolds numbers, roundoff error is found to have a considerable impact on the 
eigenvalues in the intersection of the eigenvalue branches. 

Figure 2(a) shows the pipe flow spectrum for the same values as chosen for figure 
1, but only 32 Chebyshev polynomials have been used to discretize the radial direction. 
A characteristic splitting of the mean-mode branch is observed which has also been 
found by Davey & Drazin (1969), but has not been associated with a lack of resolution. 

Figure 2(b)  illustrates the effect of roundoff errors on the spectrum. Calculations 
have been performed using a lower number of bits to represent floating point numbers, 
thus artificially increasing machine roundoff. The eigenvalues close to the region where 
the three eigenvalue branches intersect are especially affected and can deviate by orders 
of magnitude more than the perturbation imposed on them. This issue is related to the 
epseudoeigenvalues according to definition 1 and will be addressed in more detail in 
the next section. 

As the literature on linear pipe flow stability for three-dimensional non-axisymmetric 
disturbances has not included modes with higher damping rates, we will list the least 
stable eigenvalues of A R  for some selected parameter combinations (see table 1). Owing 
to the effect of truncation and roundoff error on the accuracy of the eigenvalues as 
described above, only digits are listed that were invariant both to a reduction in the 
number of Chebyshev polynomials and to a reduction in the number of bits to 
represent floating point numbers. As a general trend, fewer significant digits are 
observed for eigenvalues near the intersection of the three eigenvalue branches. All 
calculations have been carried out on a CRAY-XMP in single precision (16 bits) and 
good agreement up to the accuracy of previously published results (Metcalfe & Orszag 
1973; Salwen et al. 1980) has been found. 
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TABLE 1. Eigenvalues for a = 1, R = 3000 and three selected values of the azimuthal wavenumber n E 
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FIGURE 3. Pseudospectrum of A ,  for circular pipe flow. (a) a = 1, n = 1 ,  R = 3000, superposition of 
100 spectra of the matrix AR perturbed by matrices of energy norm (b)  Same parameters as in 
(a), contours of constant resolvent norm. (c)  a = 0, n = 1, R = 3000, superposition of 100 spectra of 
the matrix A R  perturbed by matrices of energy norm (d) Same parameters as in (c), contours of 
constant resolvent norm. The numbers on the contours specify the base- 10 logarithm of the resolvent 
norm, i.e. a (closed-) contour labelled 2 contains points at whose location the resolvent is larger than 
lo2. Equivalently, perturbations on the matrix A ,  of norm would be confined to the region in 
the complex plane encircled by the contours labelled 2.  The dashed line in (b) and ( d )  represents the 
boundary of the numerical range of A R .  

3.2. Pseudospectra, sensitivity and the numerical range 
It is important to stress again that linear theory based on eigenvalues generally explores 
the stability of a flow field in an asymptotic setting for large times. Only for normal 
operators, i.e. operators that have orthogonal eigenfunctions, are eigenvalues sufficient 
to describe the temporal behaviour for all times. The stability operator for circular pipe 
flow is of non-normal type and in this section we will examine the occurrence of 
transient effects where use will be made of the tools developed earlier. 

Following the first definition of €-pseudo-eigenvalues, figure 3 (a) shows a 
superposition of 100 spectra of the evolution matrix for a = 1, n = 1 and R = 3000 
perturbed by random matrices of norm It is observed that a perturbation of norm 
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lop3 can cause some eigenvalues to shift by a distance of order one. This sensitivity is 
highest for eigenvalues at the intersection point of the three eigenvalue branches, which 
also confirms the effect of roundoff error depicted in figure 2 (b). Figure 3 (b), displaying 
the resolvent-norm contours together with the unperturbed spectrum, gives the 
complete picture of the epseudospectrum of the stability matrix for the specified 
parameter values. 

Figures 3 (c) and 3 (d) display the e-pseudospectrum for the case of two-dimensional 
disturbances, i.e. with a = 0. The spectrum is markedly different, showing purely 
imaginary eigenvalues for which analytical expressions exist (Bergstrom 1992). It is 
evident from the e-pseudospectrum for this case that small perturbations can result in 
eigenvalues in the unstable half-plane. This is also illustrated by the resolvent-norm 
contours (figure 3d), which extend into the unstable half-plane even for moderate 
contour levels. 

It can be seen that in cases of both zero and non-zero streamwise wavenumber even 
a minute perturbation can have an appreciable effect on the location of the eigenvalues 
in certain regions of the spectrum. 

An even more important implication of non-normality is the potential for transient 
growth in energy density. Recalling inequality (9), the e-pseudospectrum depicted in 
figure 3(d) enables us to give a lower estimate for the expected transient growth 
maximum. The contour labelled 2, for example, reaches a distance of about 0.07 into 
the upper half-plane. Therefore, we anticipate the maximum G,,, of the transient 
growth curve to be larger than (0.07/10-2)2 = 49. Other contour values may give better 
estimates for the maximum. A similar estimate for G,,, can be determined for CI. = 1 
from figure 3(b). 

As has been stated in 52.5, the numerical range of A,, whose boundary is displayed 
by the dashed line in figures 3(b) and 3(d), determines the growth rate of the energy 
density for t = Of. For both parameter combinations chosen, the numerical range 
extends into the unstable half-plane. In the case of three-dimensional perturbations 
(a = 1) a maximum initial energy density growth rate 

- I t = O  d II KII = 2 m a x I m ( A , ~ , ~ )  
dt 

of 0.5629 is expected; for two-dimensional disturbances (a = 0) the maximum growth 
rate for t = O+ will be approximately 0.4927. 

3.3. Transient behaviour 
Following the procedure described in 52.3, the temporal development of the maximum 
energy density growth has been calculated for various parameter combinations. Figure 
4 shows the maximum energy amplification versus time for a = 0, 0.1, and 1, a 
Reynolds number of R = 3000 and azimuthal wavenumbers n = 1,2,3,4. For a = 0 
the ratio of energy density to the square of the Reynolds number is only dependent on 
the azimuthal wavenumber n, which has been exploited in figures 4(a) and 4(b). For 
non-zero streamwise wavenumbers this scaling breaks down due to the non-vanishing 
off-diagonal terms in (1 b), and the temporal evolution of G(T) has to be calculated for 
each individual Reynolds number. 

The plots show a substantial amount of energy density amplification before an 
exponential decay sets in. Whereas the long-term behaviour is dominated by the least- 
stable eigenmode only, a set of eigenmodes is involved in the initial increase of energy 
density . 
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FIGURE 4. Transient growth versus time for circular pipe flow. (a) a = 0,  n = 1,2,3,4, R = 3000; (b) 
close-up of(a)for small times; (c) a = 0.1, n = 1,2,3,4, R = 3000; (d) a = 1 ,  n = 1,2,3,4, R = 3000. 
The solid line denotes n = 1, the dashed line n = 2, the chain dashed line n = 3 and the dotted line 
n = 4. For (a) and (b) the scaling of the growth function G by the square of the Reynolds number has 
been used which results in growth curves that are solely dependent on the azimuthal wavenumber n. 
In (c) and (d)  the streamwise wavenumber a is non-zero and the same scaling does not apply. 

This interesting result is best demonstrated by calculating the maximum of the 
growth curve G,,, as a function of the number N of eigenfunctions included in the 
expansion (6). The eigenfunctions are sorted in descending order with respect to the 
imaginary part of the associated eigenvalue. The result is shown in figure 5 .  

If only one eigenfunction is included the maximum possible amplification factor 
G,,, is one, which will be reached at time T = 0. This is due to the decaying nature of 
the pipe flow spectrum. After including about seven eigenfunctions the maximum 
possible amplification is nearly reached and varies by less than 1.2% if more 
eigenfunctions are included. Figure 5 thus demonstrates that transient growth of 
energy density is a multi-mode phenomenon. 

A few important trends can be observed in figure 4. The increase of the streamwise 
wavenumber results in a more localized and less pronounced growth curve. This can 
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be explained by the higher damping rates for fixed Reynolds number as a increases. 
During the initial rise in maximum energy density, waves with higher azimuthal 
periodicity dominate (see figure 4b). Another noteworthy characteristic of the growth 
curves is the fact that, for higher streamwise wavenumbers, disturbances that achieve 
the maximum amplification of initial energy are disturbances with increasingly higher 
azimuthal wavenumbers. 

Axisymmetric disturbances (n  = 0) experience a very small amount of transient 
growth and, therefore, have been omitted from the plots of figure 4. 

Similar results to the ones presented in figure 4 have been found by Bergstrom 
(1992). He considers the growth of energy density that is associated with the streamwise 
velocity component normalized by the initial energy in the normal velocity only. 
Therefore, he reports larger amplification factors, which coincide with the ones given 
in figure 4 when properly scaled. In a subsequent paper (Bergstrom 1993) he computes 
the maximum transient growth employing the variational techniques used by Butler & 
Farrell (1992) with similar findings. For a wide range of parameters, OSullivan & 
Breuer (1992) also report large transient growth followed by exponential decay. Since 
their analysis is applied to a restricted class of initial conditions, the maximum possible 
amplification is less than the one shown in figure 4. 

In addition to what has been done in the previous studies on transient growth in 
circular pipes (Boberg & Brosa 1988; O'Sullivan & Breuer 1992; Bergstrom 1992, 
1993) we now present an exhaustive parameter study on the dependence of the 
transient growth on the governing parameters. First we investigate the dependence of 
the maximum amplification factor of initial energy density G,,, on the Reynolds 
number and the streamwise and azimuthal wavenumbers. The results are displayed in 
figure 6 in the (aR, R)-plane for four different azimuthal wavenumbers (n = 0,1,2,3). 

In the axisymmetric case (figure 6a) we observe an increasing value of G,,, as aR 
becomes larger. A minimum value of aR x 369.7, which has been found to be 
Reynolds-number independent for the values of R shown in figure 6 ( 4  has to be 
exceeded in order to experience transient growth of energy density. Below this value the 
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FIGURE 6. Contours of maximum transient growth in the (aR, R)-plane for selected azimuthal 
wavenumbers. (a) Contours of G,,, for n = 0, (b)  n = 1, (c) n = 2, and (d) n = 3. 

energy density exhibits decay for all times. The G,,, = 1 contour is hence the curve 
that separates parameter combinations for which energy density growth may occur 
from ones for which energy density decay is assured. 

The non-axisymmetric cases (figure 6 k d )  differ qualitatively from the axisymmetric 
case. Figure 6(&d) shows that the maximum possible amplification factor G,,, is 
obtained for disturbances with vanishing streamwise wavenumber, i.e. for two- 
dimensional perturbations. A comparison between figures 6 ( d )  and 6 (b) reveals that 
for higher values of aR disturbances with higher azimuthal wavenumbers achieve 
larger values of G,,, whereas for low aR the contrary is true. In figure 7 the ratio of 
maximum amplification factor of initial energy density G,,, and the square of the 
Reynolds number R2 is plotted. A vanishing dependence of this ratio on the Reynolds 
number for large R is observed which implies a quadratic scaling of the maximum 
energy density amplification with the Reynolds number as R + a. Similar behaviour 
has been observed for plane Poiseuille and Couette flows (Reddy & Henningson 1993). 

We will now determine the flow fields of assorted disturbances that will exploit the 
linear mechanism in an optimal way. 
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For this, we will first focus on two-dimensional (a = 0) perturbations that have 
shown the largest possible amplification of their initial energy density content. A 
Reynolds number of R = 3000 and an azimuthal wavenumber of n = 1 have been 
chosen. 

The initial condition that will result in a maximum amplification factor of 649 at a 
time to = 147 is shown in figure S(a). The velocity vectors in a cross-sectional ( r ,  0)- 
plane perpendicular to the streamwise coordinate axis are displayed. The flow field is 
characterized by a pair of strong counter-rotating vortices near the centre of the pipe 
which blend into a mostly azimuthal flow pattern as the pipe wall is approached. 
Figure 8(b) depicts the temporal evolution of energy density for this specific initial 
condition together with the maximum possible amplification (dotted curve), which for 
this specific case approximately coincide. Note that a non-zero radial perturbation 
velocity at the centre of the pipe is only possible for an azimuthal wavenumber of n = 
1. Disturbances with higher azimuthal periodicity as well as axisymmetric perturbations 
will leave the mean centreline velocity unperturbed. 



218 P. J.  Schmid and D. S .  Henningson 

G 

0 50 100 150 200 

t 

FIGURE 8. (a) Vector flow field of the optimal perturbation in the (Y, @-plane for a = 0, n = 1, R = 3000 
and to = to,, and (b)  its individual (solid) and optimal (dotted) growth curve. For this case, the two 
growth curves coincide within plotting accuracy. 

To investigate the dependence on the time to at which the perturbation reaches its 
maximum possible energy amplification, an initial disturbance has been computed that 
will reach its optimal amplification at a chosen time of to = 2. Recall that at time 
t = to the curve displaying the energy density of this particular initial disturbance will 
be tangent to the maximum growth curve. This is shown in figure 9(b). The flow field of 
the initial disturbance (figure 9 a) is remarkably similar to the one in figure 8 (a). The 
temporal evolution of the energy density for this initial condition is still close to the 
optimal curve, reaching more than 90 % of the optimal energy density amplification, 
although tangency at to = 2 is enforced. This leads us to the conclusion that for two- 
dimensional disturbances with TI = 1 the shape of the optimal initial perturbation is of 
rather universal type and insensitive to the details of the linear growth characteristics 
such as the choice of to. This finding has not been observed for flows in plane 
geometries, such as Poiseuille and Couette flow (Reddy & Henningson 1993). In this 
case, the choice of to such that to < t,,,, where t,,, denotes the time at which G,,, is 
reached, resulted in initial disturbances that were more and more concentrated in the 
wall region as to decreased. As has been pointed out by Trefethen et al. (1993), other 
optimal perturbations are conceivable, such as the disturbance that exhibits the largest 
initial growth or the perturbation that maximizes the resonant response to an external 
forcing. The investigation of these structures is outside the scope of our study. 

The two cases considered above had no streamwise variation. For comparison, we 
also computed the structure of a three-dimensional initial condition with a streamwise 
wavenumber of a = 1. For this case, the time to has been chosen as to = 10. The flow 
field of the initial disturbance (figure 9c) is substantially different from the previous 
cases (figures 8a and 9a). An overall swirling structure can be detected that, together 
with the axial flow components, suggests a strongly helical fluid motion. 

3.4. Conditions for  no growth 
We conclude this investigation of transient growth in circular pipe flow with a 
computation of the boundaries in parameter space below which any transient growth 
in energy density can be ruled out. To accomplish this we use the concept of the 
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FIGURE 9. Vector flow fields of the optimal perturbations in the (r,O)-plane for (a) a: = 0, n = 1, 
R = 3000 and to = 2 and (b) its individual (solid) and optimal (dotted) growth curve; and (c) for a: = 
1, n = 1 ,  R = 3000 and to = 10 and (d )  its individual (solid) and optimal (dotted) growth curve. 

numerical range introduced in 92.5 and determine (a, R)-pairs for selected azimuthal 
wavenumbers for which the maximum imaginary part of the boundary of the 
numerical range is zero. According to (13), this will give the curves in the (a, @-plane 
that separate regions of initial energy density growth from regions of initial energy 
density decay. The curves are shown in figure 10 and are found to be equivalent to the 
energy stability boundaries obtained in Joseph & Carmi (1969) by a variational 
technique. It is worth pointing out that the energy stability results (Joseph & Carmi 
1969) are nonlinear stability results. The equivalence between the energy stability results 
and the results obtained from calculating the numerical range is because the nonlinear 
terms of the Navier-Stokes equations are energy conserving and thus allow the growth 
or decay of perturbation energy to be treated by the linear theory. The curve resulting 
in the lowest Reynolds number for energy stability is associated with an azimuthal 
wavenumber of n = 1 and the critical parameter combination has been computed as 
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FIGURE 10. Boundaries separating regions of initial energy density growth from regions of initial 
energy density decay in the (a, R)-plane for various azimuthal wavenumbers. 

a = 1.07, R = 81.49, which conforms with the results reported in Joseph & Carmi 
(1969). 

4. Summary and conclusions 
The stability of incompressible viscous fluid flow in a circular pipe to infinitesimal 

three-dimensional disturbances has been considered. Both the flow stability for 
asymptotically large times governed by the eigenvalues and transient effects associated 
with the non-normality of the linearized stability operator have been investigated in 
detail. A formulation of the governing equations in terms of the radial velocity and 
radial vorticity has been used in conjunction with an expansion in the eigenfunctions 
of the linearized problem. Mathematical tools introduced in Reddy et al. (1993) and 
Reddy & Henningson (1993) have been adapted to the circular geometry and have 
subsequently been applied to determine the behaviour of solutions to the linear initial- 
value problem. 

Concerning the asymptotic stability of flows in circular pipes described by the 
spectrum of the linearized evolution operator, a family of modes reported by Davey & 
Drazin (1969) has been identified as a numerical artifact resulting from an insufficient 
resolution of modes with higher damping rates. 

Large transient growth preceding the exponential decay has been found which is 
largest for disturbances with azimuthal wavenumber n = 1 and vanishing streamwise 
dependence, in agreement with other investigators (O’Sullivan & Breuer 1992; 
Bergstrom 1992, 1993). The short-time behaviour, however, is dominated by 
perturbations with higher azimuthal periodicities. The largest possible amplification of 
initial energy density is monotonically increasing with Reynolds number, showing a 
quadratic Reynolds-number dependence as R --f co. The flow fields for the optimal 
initial disturbance have been determined for selected parameter combinations, resulting 
in a pair of counter-rotating vortices near the centreline embedded in a strongly 
azimuthal fluid motion near the wall for a = 0. For a = 1, the optimal disturbance 
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consists of a swirling flow field leading to an overall helical motion. Finally, the curves 
in parameter space, limiting the growth of energy density, have been determined by 
computing the numerical range of the linear stability operator. These curves have been 
found to coincide with the stability boundaries given by the energy method (Joseph & 
Carmi 1969). 

The above study has revealed both similarities and discrepancies between transient 
effects in pipe and other shear flows. The largest transient amplification of initial 
disturbance energy has been observed for perturbations with vanishing streamwise 
dependence in accordance with plane shear flows (see Butler & Farrell 1992; Reddy & 
Henningson 1993). The insensitivity of the optimal disturbances for a = 0 to the choice 
of time to at which they reach their maximum amplification factor, on the other hand, 
has not been observed in plane shear flows. Also, the maximum possible growth G,,, 
has been obtained by including only a few modes in the eigenfunction expansion, a fact 
that does not have an analogue in plane shear flows. Besides these discrepancies, the 
results for the circular pipe geometry are qualitatively similar to the ones obtained for 
plane shear flows. 

The linear growth mechanism described has been shown to operate on a fast 
timescale with amplification factors that can result in energies well within the range of 
nonlinear effects. This mechanism may therefore constitute a fundamental component 
of a rapid transition scenario in a low-energetic disturbance environment. As only a 
linear mechanism has been shown to generate a net gain in total disturbance energy, 
but fails to sustain turbulent fluid motion, a combination of the linear transient growth 
process studied in this paper and a nonlinear energy distribution process is proposed 
as the underlying mechanism for the transition to turbulence in circular pipe flow. The 
work of Boberg & Brosa (1988) suggests such a combination of linear and nonlinear 
mechanisms in the transition to turbulence in a pipe. Although further investigations 
in this direction are warranted, their results are indeed promising in explaining the 
underlying mechanisms for the onset of turbulence in a circular pipe. It is believed that 
the linear mechanism described in this presentation will play a dominant role during 
transition. An investigation of this matter is left for a future effort. 

Support for the first author has been provided by an Alfred P. Sloan Foundation 
Doctoral Dissertation Award. Computer time has been provided by NCSA, Urbana- 
Champaign. 

Appendix 
As an aid to the reader unfamiliar with the mathematical tools employed in $2, a 

simple 2 x 2 model problem will be discussed that illustrates the need for non-modal 
analysis and demonstrates the mathematical means to quantify transient effects. 

A linear evolution equation of the form 

is taken, where u and 'I resemble the normal velocity and normal vorticity respectively, 
and R denotes an equivalent Reynolds number. The influence of the velocity on the 
vorticity is accounted for by the off-diagonal term in the evolution operator. The weak 
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viscous coupling between velocity and vorticity (see main text) has however been 
neglected. As will be shown below, the above equation mimics many of the features of 
the more complicated evolution problem for flow in circular pipes as discussed in $2. 
The same model equation has been proposed by Trefethen et al. (1993) to illustrate the 
importance of non-modal behaviour in plane wall-bounded shear flows. 

It is straightforward to determine the eigenvalues and normalized eigenvectors of the 
model equation as 

h l = - l / R ,  Qi, = 

and the complete solution expanded in an eigenvector basis can be written as 

The constants A and B are determined from the initial conditions. 
It is immediately apparent from the sign of the eigenvalues that in the asymptotic 

limit of large time, the velocity and vorticity will decay to zero, independent of the 
initial conditions. On a shorter timescale, no conclusions can be drawn from the 
eigenvalues alone, and we need to resort to more appropriate tools. 

Writing the evolution equation (A 1) in the compact form 

we can write the formal solution to the initial value problem as 

d t )  = etAqn, 

with qo as the vector consisting of the initial velocity and vorticity. As a measure of 
maximum growth we define the growth function G(t) as the square of the &-norm of 
the disturbance, i.e. /1q1I2 = u 2 + y 2 ,  normalized by the initial disturbance norm, and 
optimized over all initial conditions. Mathematically, this means 

The matrix exponential for (A 1) takes the form 

and its L,-norm versus time is plotted in figure 1 1 (a) for different values of the Reynolds 
number R. As can be seen, substantial transient growth can result before the 
asymptotic behaviour governed by the (least-damped) eigenvalue prevails. 

It should be noted that the transient amplification is due to the increase in the 
vorticity component. The velocity component is decaying monotonically, as can be 
seen by looking at the velocity component of (A 2). The decaying velocity is, however, 
forcing the vorticity, which then results in transient growth. 

The reason for the large transient growth of the disturbance norm lies in the non- 
normal nature of the evolution operator A, i.e. ATA $; AAT, which results in a set of 
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FIGURE 11. (a) Transient amplification of initial disturbance norm versus time for selected Reynolds 
numbers R = 10,20,30; (b) contours of the resolvent norm, boundary of the numerical range (dashed 
line) and spectrum (symbols) of A for R = 10. 

non-orthogonal eigenvectors 
determined as 

and I,. The angle 4 between the eigenvectors can be 

which rapidly approaches zero as the Reynolds number R increases, thus leading to an 
increasingly ill-conditioned expansion basis (see (A 2)) and to large transient growth 
(figure 1 1 ) .  

Figure 1 1  (a) shows that the transient amplification of the initial disturbance norm 
is dependent on the Reynolds number R .  To investigate this dependence further, it is 
instructive to consider the evolution equation for the disturbance norm. We have 

where 11q11 = 1 has been assumed. 
Defining the numerical range of A as 

9 ( A )  = {zE%': z = xHAx with XE%'' and JIxJJ = I } ,  

we can use this quantity to determine the initial growth of the disturbance q in the L,- 
norm. In analogy to the results shown in $2.5, the largest real value of the numerical 
range Fmaz is equivalent to half the slope of the growth function G(t)  at t = 0. The 
expression for FmaX in our case can be derived as 

The Reynolds number R,, which renders FmaX equal to zero, is thus equivalent to the 
Reynolds number below which no transient growth can be expected. For our model 
problem, a straightforward calculation shows that 

dG 
R, = 4 8  and therefore - < 0 for R < 4 8 .  

dt 
8-2  
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As has been pointed out, the eigenvalues of our model only determine the asymptotic 
behaviour of the solutions to the initial-value problem. To capture the short-time 
behaviour, we need to introduce the notion of s-pseudospectra which (for matrices) is 
given as: 

A number ZEV lies in the c-pseudospectrum of a matrix A, if \l(z/-A)-'\/ >, c'. 
For our model problem the quantity (z/-A)-', known as the resolvent, is given as 

/ R 
I zR+I (z/-A)-' ~ 

- - 

"I R2 
\(zR+ l ) ( zR+2)  zR+2 

For normal evolution operators, the contours of the resolvent norm are €-balls about 
the eigenvalues, whereas for non-normal operators the contours enclose larger regions 
of the complex plane. The contours of the resolvent norm together with the spectrum 
and the numerical range are depicted in figure 11 (b). The contours clearly demonstrate 
the non-normal nature of the evolution operator. The norm of the resolvent can 
be used to calculate upper and lower bounds on the maximum growth G,,, = 
~ u p ~ > ~ G ( t ) .  For details the reader is referred to Reddy et al. (1992). 

In summary, the analysis of this model problem demonstrates that special care is 
warranted when analysing the stability characteristics of linear evolution problems 
based on non-normal operators. Eigenvalues only govern the asymptotic time 
behaviour in this case, and the norm of the matrix exponential and the numerical range 
have to be calculated to draw conclusions about the short-time behaviour of the system 
and about conditions for the occurrence of transient effects. All of these features are 
discussed in the main text for the case of disturbance evolution in incompressible 
circular pipe flow. 
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